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A broad-ranging and lively debate is under
way about the long-term consequences of
greenhouse gas (GHG)–emitting activities,
such as fossil fuel combustion, for global cli-
mate change. Although it is generally under-
stood that policies to reduce GHG emissions
can also have near-term positive and negative
ancillary side effects on public health, eco-
systems, land use, and materials, these side
effects have not been well characterized or
integrated into policy analyses of mitigation
(1). This article assesses near-term public
health consequences of reductions in ambient
concentrations of particulate matter (PM)
and ozone (O3) associated with policies to
reduce GHG emissions.

The approach used in this work parallels
that of other recent national and regional
assessments in which estimates of public
health impacts of air pollution are derived
from epidemiology-based concentration–
response functions. For example, Künzli et al.
(2) relied on established coefficients of
changes in health outcomes associated with
increments of air pollution to estimate the
impact of outdoor (total) and traffic-related
air pollution on morbidity and mortality in
Austria, France, and Switzerland. Air pollu-
tion was found to be associated with 6% of
total mortality, or more than 40,000 attribut-
able cases per year, with about half the mortal-
ities linked to traffic-related emissions. Hall et
al. (3) employed air pollutant mapping for the
South Coast Basin of California and estimated
that attaining ambient air pollution standards
might save 1,600 lives per year in the region.
The U.S. Environmental Protection Agency

(U.S. EPA) employed a similar approach to
assess the benefits of the U.S. Clean Air Act
over its first two decades of application (4)
and over the next two decades (5). The poten-
tial annual benefits from GHG mitigation
options in the United States include thou-
sands of avoided deaths and up to 520,000
work loss days that would result from the
adoption of policies that target reductions in
both air pollution and GHG emissions (6).
Preliminary national assessments for Hungary
and Canada have also suggested that substan-
tial numbers of lives can be saved, chiefly from
declines in mortality associated with fine parti-
cle reductions resulting from increased energy
efficiency (7,8). 

The Working Group on Fossil Fuels
produced a global assessment that calculated
the consequences of continuing energy poli-
cies that rely on customary practices, called
business as usual (BAU), in 2010 and 2020.
This study assessed the range of avoidable
deaths solely from projected changes in PM
that could arise between 2000 and 2020
under current policies and under the sce-
nario proposed by the European Union in
1995 (9,10). On the basis of the estimated
changes in PM and associated reductions in
mortality, the report predicted that 700,000
avoidable deaths (90% confidence interval
[CI] 385,000–1,034,000) will occur annu-
ally by 2020 under the BAU forecasts when
compared with the climate policy scenario.
As a first approximation, the cumulative
impact from 2000 to 2020 on public health
related to the difference in PM exposure
could total 8 million deaths globally (90%

CI 4.4–11.9 million). Thus, energy policies
have significant impacts on air pollution and
associated public health effects.

Scenario Development 

As part of a collaborative project to promote
consideration of public health impacts in the
development of GHG mitigation policies in
large cities today, this article develops scenar-
ios that estimate the cumulative public health
impacts of reducing GHG emissions from
2000 to 2020 in four cities: México City,
México; São Paulo, Brazil; Santiago, Chile;
and New York, New York. Using information
from the published scientific literature,
including those generated by local studies in
each of these cities, we estimate what the
adoption of climate policies would mean for
public health by 2020 based on existing trans-
portation and energy technologies that reduce
the carbon intensity of fuels. For the four
cities analyzed we estimate the baseline change
in air pollutants associated with the adoption
of energy efficiency and climate policies (CP)
intended to reduce GHG emissions during
the next 20 years. The CP scenario we apply
to each city considers the attendant impact of
GHG mitigation measures on the emissions
of primary pollutants and consequent impacts
on ambient concentrations of secondary pol-
lutants. The scenarios used in this article are
based largely upon a recent estimate of the
potential reductions in PM and O3 ambient
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concentrations that have been estimated as
achievable in Chile through the use of readily
available technologies to mitigate GHG
emissions in energy, transport, residential, and
industrial sectors (11). This Chilean study
shows that the adoption of energy efficiency
and fuel substitution measures in transporta-
tion, energy, residences, and industry can
lower GHG emissions in 2020 by approxi-
mately 13% with respect to the BAU case, at
little or no cost. 

The associated reductions in ambient con-
centrations of PM less than 10 µm in diame-
ter (PM10) and O3 are approximately 10% of
the projected baseline levels in 2020 and occur
gradually throughout the two decades. These
results agree with another study for Chile
developed independently by the Organisation
for Economic Co-operation and Development
(12). On the basis of these results, we com-
pute the benefits associated with a 10%
reduction in PM and O3 that might be asso-
ciated with climate change policies in each of
these megacities. Although we recognize that
other air pollutants may also affect human
health, we consider only PM and O3 in this
analysis. These two presently have the best-
documented health effects across a wide range
of health outcomes and are pollutants that
represent, respectively, the particulate and
the gaseous components of air pollution.
Therefore, although conservative in that only
two pollutants are considered, this analysis
does consider the breadth of types of air pollu-
tion and health effect changes that would
result from GHG mitigation measures.

The magnitude and scale of potential
benefits of GHG mitigation will vary with
the stringency of existing and proposed regu-
lations (13). Where baseline conditions
include relatively high ambient levels of pol-
lution and unsophisticated technology, as
with many rapidly developing countries such
as Chile, México, and Brazil, the potential
benefits of reducing emissions will likely be
much larger than where baseline conditions
already include fairly strict regulatory controls
and advanced systems. Mitigation policies in
cities that have little regulatory control will
have a greater absolute impact than those in
areas with well-established controls in place.
To develop the scenarios in this analysis, we
made a number of simplifying assumptions.
We assumed that the fuel and technology
mixes in the Latin American cities we assessed
here were similar. Although São Paulo relied
on ethanol fuels until the mid-1990s, that
fuel is not expected to play a major role in the
future. On the basis of recent trend informa-
tion, we assumed that the concentrations of
both PM10 and O3 would remain constant in
these cities for the baseline scenarios. For
Santiago, where progress is being made in the
reduction of PM10, we assumed a reduction

of 3% per year in the concentrations of
PM10. Applying the 10% reduction to the
projected concentrations for 2020 for México
City, São Paulo, and Santiago, respectively,
we project reductions of 6.4, 5.3, and 4.5
µg/m3 in the annual average of PM10, and
11.4, 6.5, and 4.9 ppb in the annual average
of daily 1-hr maximum O3 by 2020. 

In the analysis of air pollution–related
impacts associated with GHG mitigation for
New York City, a 10% reduction in O3 and
PM10 from present baseline levels amounts to
changes in the annual average concentrations
of 3.9 ppb daily 1-hr maximum O3 and 2.2
µg/m3 annual average PM10. This assumed
GHG-associated reduction in air pollution
compares well with the only estimate that has
been made to date regarding potential reduc-
tions that could arise from GHG mitigation
in the United States. Abt Associates (6)
recently estimated for the U.S. EPA that a
GHG policy of applying a fee of $56/ton of
carbon emitted would be associated with a
reduction of between 0.4 and 2.7 µg/m3

PM2.5 in the Midwest/Northeastern United
States (or about 0.6 to 3.9 µm/m3 PM10,
assuming 70% is PM2.5) when compared with
various baseline emissions scenarios. (PM2.5 is
the mass of suspended particles less than 2.5
µm in aerodynamic diameter that can pene-
trate to the deepest recesses of the lung.)
Thus, although New York City is very differ-
ent from Santiago, the assumption of a 10%
reduction from present PM10 and O3 levels in
New York City appears reasonable. This is
because this assumption is consistent with co-
pollutant reductions previously projected to
be associated with potential GHG mitigation
measures in this region of the United States. 

While the reductions in pollutant
concentrations estimated here are similar
between New York City and the Latin
American cities, it must be noted that they
might arise from very different policies. For
developing countries, which are not
required to abate GHGs under the Kyoto
Protocol, the reductions stem from nonposi-
tive cost measures of energy efficiency and
fuel substitution, whereas for the United
States, which is supposed to abate GHG
emissions under the Kyoto Protocol, the
reductions might result from the application
of a carbon tax or other policies.

Health Effects Estimation
Methods
To develop estimates of public health impacts
in the cities of interest over the next two
decades, we relied on published studies on air
pollution and health, using concentration–
response (C–R) coefficients derived from
studies conducted in these or similar cities
whenever possible. Table 1 shows a list of end
points that have been associated with air

pollution. The left side of the table displays
effects associated with air pollution in numer-
ous cities in more than 20 countries across the
world; these effects are used extensively in
standard setting (4,5,14). The effects in the
right side of the table have been observed in
some cities but have not yet been replicated in
many locations. Assessments of air pollution–
related health effects are based almost exclu-
sively upon epidemiologic studies, which are
corroborated by a body of knowledge from
controlled human and animal studies (5).
Most of the recent studies linking air pollu-
tion and health have applied multivariate
methods, such as Poisson models, that address
major potential confounders (15). In such
models the expected value of the number of
health effects is modeled as an exponential
function of the explanatory variables, and the
change in the number of health effects, J,
when ambient concentrations of pollutant, P,
change by ∆CP , is given by 

∆EJ
P = [exp(β J

P ⋅ ∆CP) – 1] ⋅ PopJ ⋅ BRJ
0.

β J
P is often referred to as the C–R coefficient

of end point, J, associated to pollutant P. BR J
0

is the base rate of effects, J, in the affected
population Pop J. For example, BR J

0 might be
the number of deaths per 100,000 infants less
than 1 year of age during a baseline year.
However, it is important to note that the
affected population is not necessarily the
whole population of a city. It can be sepa-
rated by age groups (e.g., infants, adults,

Table 1. Scope of human health effects of air pollution.a

Quantifiable health effects Suspected health effects

Mortality (elder) Induction of asthma 
Mortality (infant) Fetus/child developmental

effects
Neonatal mortality Increased airway 

responsiveness
Bronchitis: chronic Nonbronchitis chronic 

and acute respiratory diseases
Increased asthma attacks Cancer
Respiratory hospital Lung cancer

admissions
Cardiovascular hospital Behavioral effects 

admissions (e.g., learning disabilities)
Emergency room visits Neurologic disorders

for asthma
Lower respiratory illness Exacerbation of allergies
Upper respiratory illness Altered host defense 

mechanisms (e.g., 
increased shortness of 
breath susceptibility to 
respiratory infection)

Respiratory symptoms Respiratory cell damage
Days of work loss Decreased time to onset 

of angina
Moderate or worse Morphologic changes in 

asthma status the lung
Days with restricted Cardiovascular arrhythmia

activity
aAdapted from U.S. EPA (5).
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elder) or by health conditions (e.g., asthmatic
population) among many possible divisions.

Because β J
P is small, the previous equation

can be linearized and expressed in the follow-
ing terms:

where Pop is the total population of an area of
analysis and IF J

P is the health impact factor of
pollutant P for end point J. It encompasses
the relative risk, the base rate of the effect,
and the relative size of the exposed popula-
tion as a fraction of the total population. By
expressing it this way, it is straightforward to
compare the relative impact of pollution
across different populations, and to compute
the changes in health effects from the changes
in concentrations and total population of a
given city.

An important decision in the estimation
of pollution effects involves the selection of
pollutants for analysis. Incremental changes
in mortality and morbidity associated with
changes in exposures to PM have been docu-
mented extensively. A number of other com-
mon air pollutants, including sulfur dioxide,
carbon monoxide, nitrogen oxides (NOx),

and O3 have also been linked with various
health effects. Inclusion of several pollutants
in a single analysis simultaneously can lead to
overestimation of the total effects if the C–R
coefficients for each pollutant have been
derived independently and the effects are
added up later. Conversely, consideration of
only one pollutant (PM10, for example) to
estimate the effects can underestimate the
total air pollution effects, as several analyses
show that the total risk of air pollution
increases when more pollutants in addition to
PM10, such as O3 and nitrogen dioxide
(NO2), are considered (16,17). In this analy-
sis we considered two pollutants that have
shown consistent and relatively independent
associations with an array of adverse health
effects: PM and O3. 

Ideally, the estimation of the change in
health effects associated with concentrations
in a given city should be based on studies
conducted locally. However, local studies are
not available for every health effect in every
city. Therefore, we also use studies from other
similar places, as available. For morbidity,
C–R functions were derived from pooled esti-
mates from the international literature when
more than three studies were available.
Random effects models were used to obtain a
summary measure in this meta-analysis (18).
For the case of O3, studies taking into

account the effects of PM10 simultaneously
were employed when available. Latin
American studies were preferred for the cities
in that region. Regionally relevant informa-
tion was available for the acute effects of PM
on mortality for each of the cities. For exam-
ple, whereas New York City infant mortality
and hospital admissions effects were esti-
mated using U.S.-based studies, the Latin
American cities’ pollution effect on infant
mortality was derived from México City (19),
child medical visits from Santiago (20), and
hospital admissions from São Paulo (21).

The effects of PM exposure on mortality
have been derived both from time–series
studies that evaluate the effect of several days
of elevated or acute exposures on daily mor-
tality and from cohort studies that evaluate
the annual changes in mortality or morbidity
associated with long-term, chronic exposures.
Because the estimates from these two types of
studies focus on different time frames, we
used both types to indicate the likely upper-
and lower-bound effects on mortality. Two
main cohort studies of the general popula-
tion have reported different central effect
estimates, although their CIs overlap. We
used the Pope et al. (22) and the Dockery et
al. (23) studies to derive the central and high
estimates of mortality, respectively. A recent
reanalysis of these studies has been con-
ducted by the Health Effects Institute and
has confirmed their results (24). The lower
bound of mortality effects were obtained
from time-series studies, as shown in Table
2. Some have raised the issue that these
studies may reflect life shortening of only a
few days or weeks [sometimes referred to as
“harvesting” (25)], but recent analyses have
not borne out this assertion (26–28). The
effects of O3 on mortality in the Latin
American cities were obtained from a meta-
analysis of several studies. 

In New York, the health effects associated
with the GHG mitigation–induced air pollu-
tion decreases were based largely on the C–R
coefficients derived from the published litera-
ture for New York State by the Empire State
Electric Energy Research Corporation
(ESEERCO) as part of the New York State
Environmental Externalities Cost Study (29).
In some cases, however, alternative study
results were used to define the bounds, such
as in the case of PM10-associated mortality.
In this case, as for the Latin American cities,
the Pope et al. study (22) of the effects of
chronic PM exposure was used as the central
estimate, the Dockery et al. study (23) was
used to estimate the upper bound, and the
results of a time–series PM study of the
effects of acute PM exposure were used for
the lower bound (as derived from the
ESEERCO report). In addition, the
ESEERCO C–R coefficients were updated
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Table 2. Studies considered in the analysis of the mortality effects of PM10 for México City, São Paulo, and Santiago.

Relative risk for 10 µg/m3 increase
Estimate City Age group in PM10 (95% CI) (percent) Reference

All ages mortality
Low estimate México City All 1.2 (1.1–1.2) (33)

São Paulo All 0.85 (0.46–1.2) (34,35)
Santiago All 0.7 (0.3–1.0) (16)a

Mid estimate All cities > 30 years 3.5 (1.9–5.2) (22)a
High estimate All cities > 25 years 6.8 (2.7–11.4) (23)a

Infant mortality All cities < 1 year 4.0 (1.6–6.5) (19)
aRelative risks were multiplied by 0.55 when the pollutant in the original study was PM2.5.

Table 3. O3 and PM10 health impact factors and CIs for New York City. 

Health impact factor per million inhabitants
Health effect outcome Mid 95% CI Reference

Ozone impacts (effects per part per billion of annual average daily 1-hr maximum ozone)
Acute mortality 1.2 (0.0–2.4) (36)
Acute respiratory hospital admissions 5 (3–7) (37)
Acute emergency department visits 40 (25–55) (38)
Acute asthma attacks 1,005 (570–2,747) (39)
Acute restricted activity days 17,000 (7,000–27,000) (40,41)
Acute respiratory symptom days 50,000 (26,000–78,000) (42)

PM10 impacts (effects per microgram per cubic meter of PM10)
Acute and chronic infant mortality 0.21 (0.1–0.3) (43)
Acute and chronic adult mortality 33 (8–52) (22) 
Acute respiratory hospital admissions 12 (7–17) (44)
Chronic adult bronchitis 39 (19–59) (45)
Acute bronchitis in children 53 (26–78) (46)
Acute emergency department visits 94 (55–130) (38)
Acute asthma attacks 774 (446–2,589) (39) 
Acute work loss days 5,300 (2,700–8,300) (47)
Acute restricted activity days 14,900 (7,616–23,509) (48)
Acute respiratory symptom days 170,000 (81,000–259,000) (42)
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with newer studies as appropriate, and
studies conducted in or near New York State
were chosen when available. 

For each end point, we derived health
impact factors (as defined above) specific for
each city, as presented in Tables 3–5.
Although some of the relative risks are similar
for the cities, the impact factors differ because
the population distribution of those affected
differs between cities, as does the baseline rate
of hospitalization and other end points. For
instance, infant mortality impacts are higher

in Latin American cities, in part because they
have higher baseline rates. Conversely, the
impact factors for adult health outcomes (e.g.,
work loss days and chronic bronchitis) are
usually higher per million people for New
York City than for the Latin American cities,
largely due to the higher percentage of more
frail, older individuals in this more-developed,
lower birth rate city. In addition, this analysis
assumes a higher percentage of the PM10 is
PM2.5 in New York City versus the develop-
ing nation cities (70% vs 55%), which

increases the impacts per µg/m3 of PM10
reduction in New York City versus the other
cities. To estimate the total health effects
avoided during the next two decades, we
applied the impact factors to the projected
population and concentration changes, mak-
ing the simplifying assumption that the cur-
rent health conditions in these cities would
prevail and that population would increase
according to official projections, except in
New York City, where a stable population size
was assumed. 

Table 4. PM10 health impact factors (with 95% CIs) developed for México City, São Paulo, and Santiago.a

Age group México City São Paulo Santiago
End point (years) Mid 95% CI Mid 95% CI Mid 95% CI References

Mortality effects
Mortality Allb 21 (7–41) 20 (2–39) 12 (2–23) See Table 2
Infant mortality < 1 2.2 (0.9–3.6) 1.2 (0.5–2.0) 0.9 (0.4–1.5) See Table 2

Chronic morbidity effects
Chronic bronchitis > 30 26 25.6 21.1 (8–43) 20.9 (6–36) (49)

Hospital admissions
Cardiovascular causes All 2.4 (2–3) 2.4 (2–3) 2.4 (2–3) Pooled from Los Angeles (50), Ontario

(51), Detroit (52), Michigan (53), 
Chicago (54)

Respiratory causes All 5.7 (4–8) 5.7 (4–8) 5.7 (4–8) Pooled from California (55), Ontario
(51), Paris (56), London (57), 
Amsterdam (58), Rotterdam (58), 
Cleveland (59), Buffalo (37), New 
York (37), Ontario (60), Milan (61), 
Los Angeles (50)

Children: all causes < 13 3.2 (2–5) 8.2 (4–12) 8.2 (4–12) São Paulo (21)
Other hospital visits

Emergency room visits All 141 (0–351) 93 (0–232) 93 (0–232) Pooled from London (62), México (63), 
Quebec (64), Steubenville (65)

Children: medical visits 3–15 63 (14–112) 155 (34–275) 83 (18–147) Santiago (20)
Morbidity effects

Asthma attacks All 668 (161–1,175) 668 (161–1,175) 668 (161–1,175) (39)
Children: acute bronchitis 8–12 65 (0–145) 64 (0–143) 62 (0–138) (46)

Restricted activity
Work loss days 18–65 3,655 (3,095–4,216) 3,965 (3,357–4,573) 3,657 (3,096–4,217) (47)
Restricted activity days 18–65 10,539 (9,287–11,792) 11,431 (10,073–12,790) 10,543 (9,291–11,796) (47)

aEffects per million people per microgram per cubic meter PM10. bThe age groups considered vary according to the estimate (see Table 2 for details). 

Table 5. Ozone health impact factors and 95% CIs developed for México City, São Paulo, and Santiago.a

Age group México City São Paulo Santiago
End point (years) Mid 95% CI Mid 95% CI Mid 95% CI References

Acute mortality
Total All 1.9 (1.0–2.7) 1.8 (1.0–2.7) 1.0 (0.2–1.7) México City and São Paulo: pooled 

from London (66), México (67), 
México (33), Chicago (68), Phila-
delphia (69,70), Amsterdam (71), 
European cities (72), Rotterdam (73). 
Santiago: summer (16) 

Hospital admissions
Respiratory causes All 15 (2–29) 15 (2–29) 15 (2–29) Pooled from Buffalo (37), New York 

(37), Ontario (60) 
All causes: children < 5 0.29 (0.03–0.55) 0.65 (0.07–1.23) 0.50 (0.05–0.94) Brazil (74)

Other hospital visits
ERV for RSP causes All 144 (76–212) 95 (50–140) 144 (76–212) Pooled from Montreal (64), México 

(75), Ontario (17) 
Morbidity effects

Asthma attacks All 1,140 (0–2,745) 1,140 (0–2,745) 1,140 (0–2,745) (46)
Restricted activity days Adults 11,781 (8,036–13,678) 12,779 (8,716–14,835) 11,786 (8,039–13,683)

ERV for RSP, emergency room visits for respiratory causes. 
aEffects per million people per part per billion per cubic meter annual average daily 1-hr maximum O3.
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Results
Tables 6 and 7 present the health effects
estimated to be avoided in the four cities for
the period 2000–2020 if modest GHG miti-
gation measures are initiated now, due to
expected reductions in concentrations of PM
and O3, respectively. Figure 1 shows the total
effects due to PM and O3 reductions for all
four cities combined. Not all end points
could be evaluated for all cities, as relevant
studies were not always available for every
outcome for every city. Therefore, some of
the estimations presented here are likely to
be underestimates.

For the period analyzed, nearly 64,000
(95% CI 18,000–116,000) premature deaths
associated with air pollution could be avoided
if policies aimed at achieving modest reduc-
tions in GHG emissions are undertaken now.
We also estimate that at least 65,000 (95% CI
22,000–108,000) new cases of chronic bron-
chitis; 91,000 (95% CI 28,000–153,000)
hospital admissions; and 787,000 (95% CI
136,000–1,430,000) emergency room visits
could be avoided. Other effects may appear
less important, but their numbers are quite
high. We predict that 6.1 million (95% CI
0.49–14.1 million) asthma attacks can be
avoided, as well 37 million (95% CI 27–47

million) work loss days or other days with
restricted activity.

The effects in children are also important
to note. Premature deaths of infants less than
1 year of age (including neonatal mortality)
that can be avoided amount to 4,100 (95%
CI 1,600–6,700). In addition, more than
161,000 (95% CI 0–350,000) cases of acute
bronchitis in children 8–12 years of age as
well as 202,000 (95% CI 45,000-360,000)
medical visits of children 3–15 years of age
could be avoided. (This last effect was evalu-
ated only in the Latin American cities.)

Discussion

Analyzing the total burden on human health
from ambient air pollution in a community
remains challenging, given the uneven nature
of information on which such assessments
must draw, the absence of information on
many key pollutants, and the wide range of
uncertainties characterizing many parts of the
process. Because we have data from the cities
reviewed here on the entire age range of the
population and a broad range of effects that
could occur throughout this range, this analy-
sis provides a more robust assessment than
past global efforts (10). Still, there is much
that is not addressed in this work, including

impacts on ecosystems, water supply and
quality, agriculture, and materials damage. 

We believe that our analysis is conservative
for various reasons. First, we assumed no major
changes in technologies for transport, energy,
and commerce in the next two decades. Some
air pollutants (such as O3, some aromatic
hydrocarbons, and NO2) continue to increase
in many metropolitan regions; their full
impact is not assessed in this analysis. In addi-
tion, we could not include estimates of syner-
gistic effects between various air pollutants, or
with cofactors such as pollen and other aller-
gens. New studies have indicated that syner-
gies can occur between air pollutants and
allergens. Thus, for example, British analyses
show that physician visits for asthma and
allergic rhinitis are increased more than addi-
tively when both pollen and air pollution lev-
els are elevated (30). We also did not consider
effects tied with cancer (31) and other dis-
eases linked with exposures to pollution and
other airborne toxics, which are not usually
monitored and can be quite high in rapidly
developing areas (32).

The rapid pace of urbanization globally
means that more people are living in large
cities than at any point in human history.
Policies that increase energy efficiency and
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Table 7. Health effects avoided from 2000 to 2020 in the four cities due to ozone reductions if GHG mitigation measures are taken.

Age group México City São Paulo Santiago New York
End point (years) Mid 95% CI Mid 95% CI Mid 95% CI Mid 95% CI

Acute mortality
Total All 4,610 (2,500–6,720) 1,256 (681–1,831) 293 (54–533) 566 (0–1,133) 

Hospital admissions
Respiratory causes All 37,964 (4,746–71,183) 10,588 (1,324–19,853) 4,738 (592–8,884) 2,360 (1,463–3,256)
All causes < 5 721 (79–1,363) 447 (49–846) 153 (17–289)

Other hospital visits
ERV for RSP causes All 354,005 (186,495–521,515) 65,245 (34,372–96,119) 44,183 (23,276–65,090) 18,876 (11,798–25,955)

Morbidity effects
Asthma attacks All 2,800,570 (0–6,744,230) 781,070 (0–1,880,943) 349,538 (0–841,745) 474,260 (268,747–1,296,309)
Restricted activity days Adults 28,942,806 (19,742,221–33,601,432) 8,755,334 (5,972,114–10,164,590) 3,613,755 (2,464,984–4,195,424) 8,022,300 (30,303,300–12,741,300)

Table 6. Health effects avoided from 2000 to 2020 in the four cities due to PM10 reductions if GHG mitigation measures are taken.

Age group México City São Paulo Santiago New York
End point (years) Mid 95% CI Mid 95% CI Mid 95% CI Mid 95% CI

Mortality effects
Mortality All 29,055 (9,265–56,293) 11,225 (1,173–21,749) 3,960 (801–7,673) 8,785 (2,130–13,842)
Infant mortality < 1 3,065 (1,187–4,944) 701 (271–1,130) 320 (124–516) 56 (43–75)

Chronic morbidity effects
Chronic bronchitis > 30 35,353 (10,904–59,803) 11,899 (3,670–20,129) 7,087 (2,186–11,989) 10,382 (5,058–15,706)

Hospital admissions
Cardiovascular causes All 3,341 (2,339–4,344) 1,365 (956–1,775) 819 (575–1,062)
Respiratory causes All 7,894 (5,026–10,763) 3,226 (2,054–4,398) 1,934 (1,231–2,637) 3,194 (1,863–4,525)
Children: all causes < 13 4,475 (2,282–6,668) 4,638 (2,365–6,911) 2,788 (1,422–4,154)

Other hospital visits
Emergency room visits All 195,355 (0–484,682) 52,756 (0 –130,890) 31,631 (0 –78,478) 25,023 (14,641–34,606)
Medical visits 3–15 87,064 (19,217–154,912) 87,377 (19,286–155,468) 28,054 (6,192–49,916) (0–0)

Morbidity effects
Asthma attacks All 923,315 (222,624–1,624,005) 377,312 (90,975–663,649) 226,226 (54,546–397,906) 205,988 (118,839–689,268)
Acute bronchitis 8–12 89,897 (0–200,805) 36,157 (0 –80,764) 20,876 (0 –46,631) 14,055 (6,838–20,893)

Restricted activity
Work loss days 18–65 5,051,218 (4,276,788–5,825,648) 2,238,907 (1,895,648–2,582,167) 1,238,111 (1,048,289–1,427,933) 1,404,099 (717,650–2,215,355)
Restricted activity days 18–65 14,563,826 (12,833,091–16,294,560) 6,455,286 (5,688,153–7,222,418) 3,569,759 (3,145,537–3,993,982) 3,966,380 (2,027,261–6,258,066)
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promote less carbon-intensive fuels can yield
a broad array of benefits by simultaneously
improving local and regional air pollution
and reducing the long-term buildup of GHG.
Given the current and projected patterns of
population growth and air pollution concen-
trations, the cumulative potential impact on
public health from fossil fuels for the next
two decades is quite high for any of the cities
analyzed. Part of this burden can be avoided
if GHG abatement policies to reduce the net
use of fossil fuels are adopted. For Santiago
and the other cities, the adoption of currently
available technologies in energy, transport,
residences, and industry can reduce popula-
tion exposure to air pollution by at least 10%
by 2020, yielding the associated public health
benefits we have presented. Similar types of
health impact reductions are expected to
occur in other developing world cities if
GHG emissions mitigation policies are also
implemented in those cities. 

This current collaborative analysis stems
from an effort to integrate into the public dis-
cussion of GHG mitigation policies a consid-
eration of what these policies might mean for
public health in the nearer term. We fully
recognize that population patterns can be
changed by events not integrated into this
assessment. We also are not unaware of
promising technologies, such as fuel cells for
energy production and transportation appli-
cations, that might substantially alter air pol-
lutant emissions in the future. The estimates
developed here are offered to illustrate the
potential scale and scope of impacts. A fuller
accounting would likely show still greater
public health and natural resource benefits
than this preliminary assessment. 

Conclusion

The estimates offered here are presented for
three purposes: to stimulate discussion of the
full range of potential impacts of changes in
future patterns of air pollution in developed
and developing countries; to bring the subject
of public health benefits to the attention of
those who are formulating public policy
regarding GHG mitigation; and to encourage
additional research on this topic. The prelim-
inary results in this work indicate that policies
aimed at mitigating GHG emissions can pro-
vide a broad range of more immediate air pol-
lution benefits to public health in the
countries that implement these GHG mitiga-
tion measures. Conversely, not acting or post-
poning actions to reduce GHG emissions will
fail to achieve the health benefits we present
in this analysis.

The estimates of the potential public
health benefits from the adoption of GHG
mitigation policies offered in this paper were
developed opportunistically, incorporating
results from a variety of studies conducted for
different purposes. While it must be acknowl-
edged that there is still much that remains to
be learned about the intricacies of climate
change and the respective (and potentially
interactive) roles of the various air pollutants,
the numbers developed for these four cities
illustrate the magnitude and scale of the air
pollution impacts that may be averted by
implementing GHG mitigation measures,
according to current understanding. As pres-
sures mount for actions to be taken to reduce
GHG emissions, decisions being made in the
next decade will affect the forms of energy
production and transportation systems that
will fuel this century in many regions.

Further, efforts to promote a sounder
accounting of how these technologies will
affect public health must be encouraged. The
failure to provide a fuller tally of potential
health damages tied with air pollution in the
discussions of GHG mitigation policies not
only limits the utility of those discussions but
also fails to meet a basic human concern.
People care greatly about their health and the
health of their children. Decision makers
need to be well informed about the extent to
which global climate policies adopted today
can be expected to affect public health in
both the near and long term. 
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